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Abstract 
 

This work applies previously published frameworks developed for analyzing 

multi-dimensional panel data of survey forecasts to IPD forecasts from the Survey of 

Professional Forecasters. The paper expands on these frameworks, demonstrates that the 

frameworks imply the existence of new and richer measures of shocks and volatilities, 

and shows how these measures can be extracted from multi-dimensional forecast panels. 

Three distinct types of economic shocks (cumulative shocks, cross-sectional shocks, and 

discrete shocks) and implied volatility measures based on these shocks are calculated for 

IPD inflation over the period 1969 through 2004. GMM tests for forecaster biases are 

conducted using the expanded framework. 

 

 

 

 

 

Keywords: 

Panel data, shocks, volatility, multidimensional, Survey of Professional Forecasters, 

inflation, rationality, error measures, evaluating forecasts, inflation forecasting, volatility 

forecasting 

 

 

 2



1. Introduction 

The existence of multi-dimensional panel data sets significantly predates 

methodologies for extracting maximal information from the data sets. The Survey of 

Professional Forecasters (SPF), instituted in late 1968, is a three-dimensional panel data 

set in which multiple forecasters forecast macroeconomic variables over multiple quarters 

and at multiple quarterly horizons (Croushore 1993; Zarnowitz and Braun 1993). 

Similarly, the Livingston Survey (LS), instituted in 1946, asks participants to forecast 

variables semi-annually and at multiple semi-annual horizons (Croushore 1997). While 

the SPF and the LS have long histories, the relative infrequency of the forecasts 

(particularly in the case of the LS) combined with the facts that the forecasts are 

anonymous and that the participant memberships have changed over time limits the 

usefulness of the data. In contrast, the Blue Chip Survey of Professional Forecasters 

(BCS), instituted in 1976, asks multiple participants to forecast variables monthly and at 

multiple monthly horizons. Because the BCS forecasts are not anonymous, researchers 

have suggested that the BCS forecasters have greater incentive to produce accurate 

forecasts. While these (and other) multi-dimensional panel surveys have long histories, 

the first methodologies that fully utilized the multi-dimensionality did not appear until the 

1990’s.1 

Batchelor and Dua (1991) and Swindler and Ketcher (1990) were among the first 

to perform panel data analyses on the BCS. However, because they employed then-

typical panel data techniques, they were forced to restrict their analysis to two of the three 

dimensions the data set offered (Batchelor and Dua used multiple targets and multiple 

                                                 
1 See Lahiri (1981), Visco (1984), Lovell(1986), Pesaran (1988) and Maddala (1990) for reviews of earlier 
studies using these and other survey data sets. 
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horizons, but single individuals, while Swindler and Ketcher used multiple individuals 

and multiple targets, but single horizons). Keane and Runkle (1990) perform a panel data 

analysis on the SPF, but similarly restrict their analysis to two of the three available 

dimensions (they use multiple individuals and multiple targets, but single horizons) as do 

De Bont and Bange (1992) who analyze the LS (they use multiple targets and multiple 

horizons, but aggregate individuals into consensus forecasts).2 Keane and Runkle’s 

(1990) attempt to analyze the SPF data set is noteworthy for the use of the generalized 

method of moments despite the fact that the results of their analysis are invalid due to 

unaddressed non-stationarity (Bonham and Cohen, 1995). Davies and Lahiri describe a 

methodology for analyzing what they term “multi-dimensional” panel data (i.e. panel 

data with more than two dimensions) and apply the methodology to the BCS data (Davies 

and Lahiri, 1995) and the SPF data (Davies and Lahiri, 1999). They show that by 

employing techniques that account for all three of the data sets’ dimensions, additional 

information can be obtained that would not otherwise be available.3 

The purpose of this paper is to build on the Davies-Lahiri multi-dimensional 

analysis framework in an attempt to better describe shocks and the volatilities of shocks. 

In the next section, I describe the data sets I use in this paper. In section 3, I show how 

the Davies-Lahiri framework implies the existence of three distinct measures of shocks. 

In sections 4 and 5, I employ these measures to calculate shocks and volatilities for IPD 

inflation. Section 6 offers a conclusion and suggestions for future research. 

                                                 
2 For a more recent, though not panel, analysis of the LS data, see Thomas (1999). 
3 For example, Davies and Lahiri (1999) show that restricting a three-dimensional data set to two-
dimensions is equivalent, among other things, to imposing restrictions on components of the error 
covariance matrix. 
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2. Measuring Implied Inflation Forecasts and Actual Inflation 

The SPF asks forecasters to forecast, each quarter, the level of the implicit price 

deflator (IPD) for the last quarter, the current quarter, and the each of the next four 

quarters. Forecasters are assigned identification numbers and are thus anonymous. From 

1968-IV (the inception of the survey) to 1991-IV, individuals forecasted the level of the 

GNP deflator. From 1992-I to 1995-IV, individuals forecasted the level of the GDP 

deflator, and from 1996-I to the present, individuals have forecasted the chain-weighted 

GDP deflator. This paper focuses on the 52 forecasters who responded at least 25% of the 

time over the period 1968-IV through 2005-I.4 Each forecaster (when responding) 

reported one forecast for each of six forecast horizons. Fifty-two forecasters reporting six 

forecasts for each of 147 quarters, results in 45,864 potential data points. Because all 

forecasters occasionally failed to respond to the survey, the data set contains 13,510 

forecasts. I arrange these forecasts by individual, target (the quarter being forecast), and 

horizon (the number of quarters prior to the realization of the target).  

To avoid problems associated with integrated data, I look at the forecasters’ 

implied inflation forecasts (Bonham and Cohen, 1995). At a given point in time, an 

individual forecasts the level of IPD for the previous quarter (horizon -1), the current 

quarter (horizon 0), and each of the next four quarters (horizons 1 through 4). After 

making the appropriate adjustments for base year changes, I compute the implied 

inflation forecast for quarter t as:5 

                                                 
4 Given the amount of data manipulation required, computer limitations required that we not use the entire 
data set. The individuals’ survey identification numbers of the forecasters in our data set are: 7, 8, 15, 20, 
22, 30, 31, 32, 34, 35, 38, 40, 43, 44, 49, 51, 54, 60, 62, 64, 65, 66, 69, 70, 72, 73, 77, 78, 82, 84, 86, 87, 
89, 94, 98, 99, 109, 125, 144, 407, 411, 420, 421, 426, 428, 429, 431, 433, 439, 446, 456, and 463. 
5 Base year changes occur in 1976–I, 1986–I, 1992–I, and 1996–I. 
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where Lith is the IPD level forecast made by individual i for target quarter t at a horizon of 

h quarters, and Fith is the implied inflation forecast for target quarter t at a horizon of h 

quarters. Figure 1 provides a graphical depiction of the implied inflation forecast. In the 

figure, the individual provides forecasts at the beginning of quarter 7. The individual 

forecasts IPD for the end of quarter 8 (at a horizon of two quarters), Li,8,2, and the end of 

quarter 9 (at a horizon of three quarters), Li,9,3. The two IPD forecasts imply an inflation 

forecast for quarter 9 (at a horizon of three quarters), Fi,9,3. 

[Figure 1] 

Note that the forecasts are made, and the official IPD figures are released, around 

the middle of the second month of the quarter. For simplicity, let us speak of the 

“beginning of the quarter” understanding that it is really the “middle of the second month 

of the quarter.” Since both the forecasts are made and the targets are realized at the same 

time, the simplification does not affect our analysis. 

In evaluating monetary policy rules that are based on forecasts, Orphanides 

(1997) notes that the evaluation should account for the fact that forecasts are based on 

preliminary, not revised, data as forecasts based on revised information can be expected 

to differ from forecasts based on real-time data. As such, to compute the actual inflation, 

I use the so-called Real Time data set compiled by the Federal Reserve Bank of 

Philadelphia (cf. Croushore and Stark, 2001). The Real Time data set lists historical 

(going back to 1947) nominal and real GNP (GDP from 1992 forward) that was known at 
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each quarter from 1965–IV to the present.6 Dividing the nominal by the real yields the 

appropriate deflator as it was known at each quarter. Taking the quarter-over-quarter 

change yields the actual (known) inflation rate for each quarter.7 

3. The Forecasting Process and Types of Shocks 

Following Davies and Lahiri (1999), let the actual quarterly inflation rate that 

existed h quarters prior to the end of quarter t be . From the perspective of the 

forecasters,  is a latent variable in that while  exists (i.e. there was some true level 

of inflation h quarters prior to the end of quarter t),  may not be observed (as is, 

strictly speaking, always the case because inflation on a specific date is not measured), 

may be observed but only at a future date (as is the case when forecasts are made before 

the official inflation figures are announced), or may be observed but with error (as in the 

case of preliminary vs. revised inflation measures). Because  eventually drops out of 

the equations, the issue of whether or not it is observed is moot. Consider a hypothetical 

“representative rational forecaster” who correctly utilizes all pertinent and available 

information, and who forecasts without bias. Let γ

*
thA

*
thA

A

*
thA

*
th

*
thA

th be the change in  the 

representative rational forecaster, forecasting at h quarters prior to the end of quarter t, 

would expect to observe by the end of quarter t. By definition, unanticipated changes in 

 over the period from h quarters prior to the end of quarter t to the end of quarter t are 

shocks, λ

*
thA

*
thA

th. We can write the actual inflation rate from the beginning to the end of quarter 

t as: 

                                                 
6 By “known”, we mean the latest data revision available to forecasters at each point in time. 
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 *
t th thA A thγ λ= + +  (1.2) 

where shocks (λth) can include both changes in  that were not anticipated (i.e. γ*
thA th = 0 

⇒ λth = ), and changes in  that were anticipated yet never materialized (i.e. γ*
thA∆ *

thA th = 

  ⇒ λ*
thA∆ th =  ).  *

thA−∆

 Figure 2 shows the relationships among the forecasts with respect to known 

information and shocks. The brackets above the time line labeled λ10,4 through  

λ5,-1 show the times over which shocks can occur which will affect the accuracy of the six 

forecasts made at the beginning of quarter 7 for various horizons.8 The solid sections of 

the brackets show all points in the future in which shocks can affect the accuracy of each 

forecast. The dotted sections of the brackets show all points in the past in which shocks 

(in the form of data revisions) can affect the accuracy of each forecast. For example, the 

bracket associated with λ8,2 indicates that revisions in the IPD data for quarters 5 and 6 as 

well as news that occurs in quarters 7 and 8 can affect the accuracy of the forecast Fi,8,2.. 

Data more than two quarters old is considered “certain” (i.e. no significant revisions are 

expected).9  

[Figure 2] 

A specific forecaster can deviate from the representative rational forecaster for 

three reasons: (1) the specific forecaster can exhibit a bias, (2) the specific forecaster can 

have access to private information or fail to access available information, or (3) the 

                                                                                                                                                 
7 This raises the question of which “vintage” (i.e. revision) of actuals data to use. Patterson (2000) provides 
evidence that the youngest vintage of data is most appropriate. 
8 Note that the brackets do not show the range over which the forecaster is forecasting (every forecast is for 
the single quarter ending at the end of the target quarter). Rather, the brackets show the range of dates over 
which the accuracy of the forecast can be affected by events external to the forecaster. 
9 We ignore here benchmark revisions, which can be systematic and occur as many as five years after the 
fact. 
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specific forecaster can incorrectly process information. Let forecasters’ biases, φih, vary 

according to the individual forecasting and to the horizon at which the individual stands. 

Batchelor and Dua (1991) assume a common bias across individuals and horizons. 

Davies and Lahiri (1999) relax Batchelor and Dua’s (1991) restriction and assume a 

common bias only across horizons. Because it is reasonable to expect that, whatever 

inherent bias a given forecaster may exhibit, the bias would decline as the horizon 

declines, in this model, I relax Davies and Lahiri’s (1999) restriction and allow for the 

possibility of a change in forecast bias over both individuals and horizons. 

Let deviations in the forecaster’s information set from the publicly available 

information set be reflected in εith. Note that it is impossible for the model to allow for 

individual, target, and horizon specific biases (i.e. φith) because the biases become 

indistinguishable from the idiosyncratic errors, εith (Clements et al., 2004). Holding 

information constant, a forecaster’s inability to process information efficiently will be 

reflected in a higher variance of εith for that forecaster. Further, εith also reflects 

idiosyncratic forecast errors – that is, forecast errors that have no systemic or 

informational cause. 

Adding the actual inflation rate at h quarters prior to the end of quarter t to the 

rationally anticipated change in the actual, and including the individual forecaster’s 

biases and deviations from public information, we have the following: 

  (1.3) ithihththith AF εφγ +++= *

Notice that all forecasters produce the same forecast when (1) all forecasters have zero 

biases (i.e. φih = 0 ∀ i, h), and (2) all forecasters have access to the same information and 

suffer no idiosyncratic errors (i.e. εith = 0 ∀ i, t, h). 
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Figure 3 shows time divided into quarters. The numbers in the boxes above the 

time line are examples of shocks to IPD inflation. Each number on the figure identifies 

shocks uniquely associated with a given occurrence and impact. The horizontal position 

of the numbers indicates the quarter in which the shocks occurred. For example, in 

quarter 6, there occurred four shocks: -1, -2, +3, and +5. The vertical position indicates 

the quarter in which the shock will impact IPD inflation. For the four shocks occurring in 

quarter 6, the +5 shock impacts inflation in quarter 6, the +3 shock impacts inflation in 

quarter 7, etc. For example, an event that occurs in quarter 6 may impact inflation over 

time in a decaying fashion such that inflation in quarter 6 is impacted greatly, inflation in 

quarter 7 is impacted somewhat less, etc. 

[Figure 3] 

The shocks depicted in Figure 3 can be grouped according to definitions in our 

model. Figure 4 provides some examples. Let us call the aggregation of all shocks that 

occur from h quarters prior to the end of quarter t to the end of quarter t cumulative 

shocks and denote them as λth. Let us call the sum of all shocks that occur in the single 

quarter h quarters prior to the end of quarter t and that impact IPD inflation at any point 

up to the end of quarter t cross-sectional shocks and denote them as uth. Shocks that occur 

in the single quarter h quarters prior to the end of quarter t and that impact IPD inflation 

only in quarter t are discrete shocks and denoted as vth. Figure 4 provides examples of 

these three types of shocks. The definitions of the shocks are summarized in Table 1. 

[Figure 4] 

[Table 1] 
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 From Figure 4, we can see the relationships among the three types of shocks. 

Cumulative shocks are all the shocks that occur starting h quarters prior to the end of 

quarter t and ending at the conclusion of quarter t. Decomposing a single cumulative 

shock measure, λth, according to the times at which the shocks occur yields cross-

sectional shocks. Cross-sectional shocks, uth, are the components of a cumulative shock 

that occur in the single quarter that is h quarters prior to the end of quarter t. 

Mathematically, we have: 

 
1

,
0

h

th t h j
j

uλ
−

−
=

=∑  (1.4) 

Decomposing a single cross-sectional shock measure, uth, according to the times 

at which the shocks will impact yields discrete shocks. Discrete shocks, vth, are the 

components of a cross-sectional shock that will impact at various points in the future. 

Mathematically, we have:  

 
1

,
0

h

th t j h j
j

u v
−

− −
=

= ∑  (1.5) 

Combining (1.4) and (1.5) yields an expression for the relationship between cumulative 

shocks and discrete shocks. 

 
11

,
0 0

h jh

th t k h j k
j k

vλ
− −−

− − −
= =

=∑ ∑  (1.6) 

For example, the cumulative shock λ9,4 is the set of all shocks that occur from the 

beginning of quarter 6 to the end of quarter 9 (see Figure 4). This cumulative shock is the 

sum of the cross-sectional shocks: u9,4, u9,3, u9,2, and u9,1, or the sum of the discrete 

shocks: v9,4, v8,3, v7,2, v6,1, v9,3, v8,2, v7,1, v9,2, v8,1, and v9,1. 
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4. Estimating Shocks 

We can estimate the three types of shocks by looking at changes in forecasts over 

different horizons and for the same target. For example, differencing (1.3) over h we 

have: 

  (1.7) * *
, , 1 , 1 , 1 , 1 , , 1ith i t h th t h th t h ih i h ith i t hF F A A γ γ φ φ ε ε− − − −− = − + − + − + − −

Solving (1.2) for  and incrementing the horizon, we have *
thA

 * *
, 1 , 1 , 1   and   th t th th t h t t h t hA A A Aλ γ λ γ− −= − − = − − −  (1.8) 

Substituting (1.8) into (1.7), we have 

 ( ) ( ), , 1 , 1 , 1 , 1 , 1 , , 1ith i t h t th th t t h t h th t h ih i h ith i t hF F A Aλ γ λ γ γ γ φ φ ε ε− − − − −− = − − − − − + − + − + − −  (1.9) 

Simplifying (1.9) yields 

 , , 1 , 1 , 1 , , 1ith i t h th t h ih i h ith i t hF F λ λ φ φ ε ε− − −− = − + + − + − −  (1.10) 

Subtracting (1.3) from (1.2) we find the forecast error for forecaster i standing h quarters 

prior to the end of target quarter t: 

 ithihthitht FA εφλ −−=−  (1.11) 

Assuming the idiosyncratic errors and deviations from public information represented by 

εith are white noise over all dimensions, and that the shocks are white noise, we can 

estimate the forecaster biases, φih, by taking the mean of the forecast errors in (1.11) over 

t as follows: 

 (
1

1ˆ
T

ih t ith
t

A F
T

φ
=

− = −∑ )  (1.12) 
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Substituting the estimates in (1.12) into equation (1.10) and averaging over i (again 

assuming the εith are white noise) yields estimates of the changes in shocks over horizons. 

We have: 

 (, 1 , , 1 , 1
1

1ˆ ˆ ˆ ˆ
N

th t h ith i t h ih i h
i

F F
N

λ λ φ φ− −
=

− = − + + −∑ )−  (1.13) 

The differences in the cumulative shocks over horizons, 

 , 1
ˆ ˆˆth th t hu λ λ −= −  (1.14) 

are the cross-sectional shocks impacting the economy over the single quarter beginning h 

quarters prior to the end of quarter t. From (1.14), we can estimate the discrete shocks as 

 1, 1ˆ ˆ ˆth th t hv u u − −= −  (1.15) 

Figure 5 depicts graphically the derivation of the shock measures. 

[Figure 5]  

 Following similar logic to that shown above, we can estimate discrete anticipated 

changes in the actual. Taking the appropriate difference in (1.3) we have: 

  (1.16) * *
, 1, 1 1, 1 1, 1 , 1 , 1, 1ith i t h th t h th t h ih i h ith i t hF F A A γ γ φ φ ε ε− − − − − − − − −− = − + − + − + −

Because “h quarters prior to the end of quarter t” is the same point in time as “h – j 

quarters prior to the end of quarter t – j,” we have * *
,  th t j h jA A − − j= ∀ . Incorporating this 

into (1.16) causes the actual inflation terms to cancel and we have: 

 , 1, 1 1, 1 , 1 , 1, 1ith i t h th t h ih i h ith i t hF F γ γ φ φ ε ε− − − − − − −− = − + − + −  (1.17) 

Estimating the forecaster biases and averaging (1.17) over i yields estimates of the 

difference in cumulative anticipated changes over horizons as: 

 (1, 1 , 1, 1 , 1
1

1 ˆ ˆˆ ˆ
N

th t h ith i t h ih i h
i

F F
N

γ γ φ φ− − − − −
=

− = − − +∑ )  (1.18) 
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where the cumulative anticipated change (γth) is the sum of changes the representative 

rational forecaster anticipates occurring from h quarters prior to the end of quarter t to the 

end of quarter t. The first difference in the cumulative anticipated changes, 

 1, 1ˆ ˆ ˆth th t ha γ γ − −= −  (1.19) 

is the change in IPD inflation anticipated, at h quarters prior to the end of quarter t, to 

occur in quarter t. As ath are analogous to vth in terms of the timing of occurrence and 

impact, we can refer to them as discrete anticipated changes. The definitions of 

cumulative and discrete anticipated changes are summarized in Table 2. 

 Finally, we can find the relationship between discrete shocks and discrete 

anticipated changes by combining (1.10) and (1.17) with (1.15) and (1.19). We see that 

the estimate of a discrete shock is the change in the estimate of the discrete anticipated 

changes in the target variable. 

 , 1ˆ ˆ ˆth th t hv a a −= − +  (1.20) 

Figure 6 depicts several examples of anticipated changes. The numbers in boxes 

are changes in IPD inflation that the representative rational forecaster anticipates. The 

horizontal position of a number indicates the quarter in which the forecaster generated the 

expectation. The vertical position indicates the quarter for which the forecaster 

anticipates the change. For example, in Figure 6, the representative forecaster, standing at 

the start of quarter 6, anticipates that IPD inflation will change by +3 in quarter 6, +2 in 

quarter 7, +1 in quarter 8, and not change in quarter 9. 

[Figure 6] 
 

[Table 2] 
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Employing the estimation techniques shown above, one can show the discrete 

shocks to IPD inflation (Figure 7). The vertical bars show the shocks according to the 

quarters that the shocks impacted (as distinct from the dates that the shocks occurred) for 

the period 1969-III through 2004-IV. Due to the randomness of news, we would expect 

that some of the discrete shocks would reinforce each other, while others would 

counteract each other. Adding the discrete shocks according to their times of impact 

yields a measure of the net impact of discrete shocks at each point in time, t. The line 

graph in Figure 7 shows the net impact of the three discrete shocks, vt,4 + vt,3 + vt,2, across 

time. 

[Figure 7] 

Noteworthy is the difference between the summed discrete shocks and changes in 

IPD inflation (Figure 8). Changes to inflation from one period to the next will either be 

anticipated, in which case the changes will show up in the calculations as discrete 

anticipated changes, or unanticipated, in which case the changes will show up in the 

calculations as discrete shocks. As such, one would expect to see a stronger correlation 

between changes in the actual and discrete shocks during periods of greater uncertainty, 

and a stronger correlation between changes in the actual and discrete anticipated changes 

during periods of lesser uncertainty. The implication is that the use of changes in the 

macroeconomic variable as a proxy for shocks can lead to a misinterpretation of the 

economic climate, but that this misinterpretation is ameliorated during periods of greater 

uncertainty. This finding is consistent with approaches to modeling, for example, 

monetary shocks (Bernanke & Mihov, 1998, and Christiano et al., 1997) and trade shocks 

(Chang and Velasco, 2001). For example, in 2000-IV, the economy experienced a 
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marked increase in IPD inflation. According to the discrete shock measures, however, 

this increase was almost entirely expected. Hence, although there was a significant 

change in the macroeconomic measure, there was almost no shock to the economy in 

2000-IV. Conversely, in 2002-I, the economy experienced IPD inflation slightly below 

the long-term average despite the fact that, in that same quarter, shocks impacting IPD 

inflation were significantly negative – the implication being that the economy expected a 

rise in inflation that never materialized. 

[Figure 8] 

5. Estimating Volatility 

 Each of the shock measures implies a corresponding volatility measure that we 

can refer to as, respectively, cumulative volatility, cross-sectional volatility, and discrete 

volatility. The definitions of the volatility measures are analogous to the definitions of the 

shock measures shown in Table 1. Combining (1.13) through (1.15), we have 

 ( ), , 1 , 1, 1 , 1, 2 , 1 , 2
1

1 ˆ ˆ ˆˆ 2
N

th ith i t h i t h i t h ih i h i h
i

v F F F F
N

φ φ φ− − − − − − −
=

= − + + − + − +∑  (1.21) 

Taking the sample variance across i of the expression inside the summation of (1.21) 

yields the volatility measures for discrete shocks. We have: 

 ( ) ( )2

, , 1 , 1, 1 , 1, 2 , 1 , 2
1

1 ˆ ˆ ˆ ˆvar 2
1

N

th ith i t h i t h i t h ih i h i h th
i

v F F F F
N

φ φ φ− − − − − − −
=

= − + + − + − + −
− ∑ v (1.22) 

As with the discrete shocks, we must make a distinction between when the volatility 

occurred and when the volatility impacted the target variable. Following the definition of 

vth, var(vth) is the volatility of shocks that occurred in the single quarter h quarters prior to 

the end of quarter t and that impact the target variable only in quarter t. Figure 9 shows 
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the discrete volatilities occurring two through four quarters in the past, arranged 

according to the quarter in which the volatility impacted the target variable.  
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Figure 10 shows the discrete volatilities separated by horizon.10 

[Figure 9] 

[Figure 10] 

6. Estimating Forecaster Biases 

In their original framework, Davies and Lahiri allowed biases to vary across 

forecasters, but held the biases constant over targets and horizons for the same forecaster. 

The model specification in (1.3) generalizes the Davies-Lahiri multi-dimensional panel 

framework by allowing forecaster biases to vary across forecasters and horizons. Note 

that this is the most general specification possible as allowing the biases to vary across all 

three dimensions would make the bias measures indistinguishable from the idiosyncratic 

errors. 

 Let the data be ordered first by individual, then target (in ascending order), then 

horizon (in descending order) so that the vector of forecasts takes the form: 

  (1.23) ( )1,1,4 1,1,3 1,1, 1 1,2,4 1,147, 1 2,1,4 52,147, 1' ,  ,  ...,  ,  ,  ...,  ,  ,  ...,  F F F F F F F F− −= −

+B

                                                

To estimate the standard errors of the forecasters’ biases, I employ GMM analogously to 

the application outlined in Davies and Lahiri (1995 and 2000). For the regression model 

in (1.11), they specify the error covariance matrix as (using their notation): 

  (1.24) 

1

2 2

 x 

...

...
where 

...

ii

N NTH NTH

εσ

 
 
 = =
 
 
  

A B B B B
B A B B B

Σ A I

B B B B A

 
10 For display purposes, the volatilities are shown as standard deviations, not variances. 
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2
iε

σ  is the variance of the idiosyncratic error for forecaster i, and I is an identity matrix. In 

(1.24), the TH x TH matrix Ai contains the covariances of error terms across targets and 

horizons for forecaster i, and the matrix B contains the covariances of error terms across 

targets and horizons and forecasters. I expand the components of their matrix B to 

account for the six forecast horizons included in this data set. We have: 

 (1.25) 

1,1 1,2 1,3 1,4 1,5 1,6

2,1 2,2 2,3 2,4 2,5 2,6 2,7

3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8

4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 5,9

5,1 5,2 5,3 5,4 5,5 5,6 5,7 5

...

...

...

...
=

'

' '

' ' '

' ' ' '

b c d e f g 0 0 0 0 0 0 0 0
c b c d e f g 0 0 0 0 0 0 0
d c b c d e f g 0 0 0 0 0 0
e d c b c d e f g 0 0 0 0 0
f e d c b c d eB ,8 6,9 6,10

6,1 6,2 6,3 6,4 6,5 6,6 6,7 6,8 7,9 7,10 7,11

7,2 7,3 7,4 7,5 7,6 7,7 7,8 8,9 8,10 8,11 8,12

, 5 , 4 , 3 , 2 , 1 ,

...

...

...

... T T T T T T T T T T T T− − − − −

 













' ' ' ' '

' ' ' ' '

' ' ' ' '

f g 0 0 0 0
g f e d c b c d e f g 0 0 0
0 g f e d c b c d e f g 0 0

0 0 0 0 0 0 0 0 g f e d c b
 x TH TH














The matrices b, c, d, e, f, and g contain the covariances of the error across horizons and 

the indicated targets. The descriptions of the matrices are summarized in Table 3. 

[Table 3] 

The elements of the matrices can be inferred from an examination of the 

overlapping of cumulative shocks. Figure 11 shows the ranges over which the 

occurrences of cross-sectional shocks are incorporated into various cumulative shocks. 

For example, the cumulative shock λ10,2 is comprised of cross-sectional shocks u8,1, u8,0, 

and u8,-1.11 Employing the definition for cumulative shocks in (1.4) (adapted for the fact 

that our horizons run from –1 to 4), and via examination of Figure 11, we can map out the 

                                                 
11 When the duration of a single horizon is the same as the duration of a single target (as in this data set), 
the pairing (t,h) does not uniquely define a quarter, though the scalar t – h does, (see Davies and Lahiri 
(1995) for an example of a data set in which the durations of target and horizon are not the same). For 
example, u8,-1, u9,0, u10,1, u11,2, u12,3, and u13,4 all refer to the same cross-sectional shocks – those occurring in 
quarter 9. For ease of exposition, I have chosen the subscripts that set the latest occurring common shock to 
a horizon of –1. 
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cross-sectional shocks that are common to cumulative shocks for target quarters 9 and 10. 

These commonalities are detailed in Table 4. 

[Table 4] 

Similarly, using Figure 12, we can map out the cross-sectional shocks that are common to 

cumulative shocks for target quarters 8 and 10. These commonalities are detailed in Table 

5. 

[ Table 5] 

Cross-sectional shocks occurring in the quarters have variances 
,

2
t huσ . Where two 

ranges of cumulative shocks, 
1 1,t hλ  and 

2 2,t hλ , overlap, the cross-sectional shocks that 

occur within the overlap create a correlation between the two λ’s. Deconstructing the 

cumulative shocks into their cross-sectional components yields 

  (1.26) ( )
1 2

1 1 2 2 1 1 2 2

1 2

, , , ,
1 1

cov , cov ,  
h h

t h t h t j t j
j j

u uλ λ
=− =−

 
= 

 
∑ ∑ 

2

Assuming rationality implies that 

 ( ) , ,1 1 2 2

1 1 2 2

2 2
1 1 2

, ,

=   
cov ,

0 otherwise
t h t hu u

t h t h

t h t h
u u

σ σ ∀ − = −= 


 (1.27) 

Combining (1.27), (1.26), the patterns shown in Table 4 and Table 5, and extrapolating 

for cases in which the targets are separated by more than two quarters, we have 

definitions for the matrices b, c, d, e, f, and g which are analogous to those described in 

Davies and Lahiri (1999) show below.12 Note that, while I show the constructs for 

matrices b, c, d, e, f, and g, for my data set, matrices f and g are zero matrices because 

                                                 
12 Davies and Lahiri (1999) identified shocks as occurring “in quarter t,” rather than “h quarters prior to the 
end of quarter t.” As such, the elements of their matrices show one subscript only whereas mine show two. 
The choice is a matter of clarity only. 
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horizons –1 and 0 drop out due to missing data. The missing data are caused by (1) the 

differencing across horizons of IPD level forecasts to obtain the implied inflation 

forecasts in (1.1), and (2) the differencing of the inflation forecasts across horizons 

necessary for obtaining estimates of the cross-sectional shocks in (1.13). 
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I estimate the cross-sectional variances, , by taking the variance of (1.13) 

across individuals: 

2
thus

 ( 2
2

, , 1 , 1
1

1 ˆ ˆ ˆ
2th

N

u ith i t h ih i h th
i

s F F
N

φ φ− −
=

= − + + − −
− ∑ )u  (1.34) 

The estimation of the idiosyncratic error variances, 2
i

sε , follows naturally from (1.11). We 

have: 
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1−

 (1.35) 

Inserting the estimated variances in (1.34) and (1.35) into the matrix construct shown in 

(1.24), (1.25), and (1.28) through (1.33) yields the error covariance matrix Σ. I then 

employ GMM estimation to obtain the standard errors as the square roots of the diagonal 

of  where X is an NTH x NH matrix of individual- and horizon-

specific dummies. A diagram of the estimated biases is shown in Figure 13. The white 

vertical lines separate forecasters whose ASA-NBER identification numbers are shown 

on the horizontal axis. Dark vertical bars indicate the individual- and horizon-specific 

biases where horizons decline as one moves to the right in the figure. Note the general 

trend of a decrease in bias as the horizon declines (the average bias at horizon 4 is 

( ) ( )1−X'X XΣX X'X

–0.00087 vs. –0.00061 at horizon 1). 

[Figure 13] 

 Figure 14 shows the ratio of the forecasters’ estimated biases to the GMM 

standard errors of the estimated biases. Again, white vertical lines separate forecasters 

whose ID numbers appear on the horizontal axis, and horizons decline as one moves to 

the right. For example, all vertical bars greater than (approximately) 2 represent 

individual- and horizon-specific biases that are significant at the 5% level. Of the 52 
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forecasters, 26 show statistically insignificant biases at all four forecast horizons.13 Nine 

show statistically significant biases at horizon 4, 14 at horizon 3, 13 at horizon 2, and 24 

at horizon 1. The average standard error is 0.0022 at horizon 4 vs. 0.0009 at horizon 1. 

Combined with the trend of declining biases shown in Figure 13, it appears that, as the 

forecasters biases decline the biases become less consistent. 

[Figure 14] 

These results are consistent with Davies and Lahiri’s (1999) findings. They found that 12 

out of 45 forecasters showed statistically significant biases when the biases were 

restricted to be individual specific only (i.e.  ih i hφ φ= ∀ ). As a rough approximation to 

their restrictions, we can look at the ratio of the average bias for each forecaster across 

horizons to the average standard error (across horizons) of the forecaster biases (i.e. 

4 4

1 1
/

ihih
h h

sφφ
= =
∑ ∑ ). Taking this rough approximation as a proxy for the test statistic, we find 

12 out of the 52 to be “statistically significant” at the 5% level.14 

7. Conclusion 

The development of panel data analysis techniques enabled researchers to extract 

more information from a data set than could be extracted from a simple pooling of the 

data. Similarly, three-dimensional panel data present even more information than simple 

(two dimensional) panel data. To extract this additional information, however, requires 

the use of new methodologies. This paper builds on the analytical frameworks set forth 

by Davies and Lahiri (1995, 1999) and demonstrates that their frameworks imply the 

existence of new and richer measures of shocks and volatilities than those heretofore 

                                                 
13 Recall that, due to data differencing, we have lost horizons 0 and –1. 
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employed in the literature. This paper also relaxes restrictions imposed in the Davies-

Lahiri frameworks to achieve a more general framework, and employs the more general 

framework in tests of forecaster bias. In addition to providing a more general framework 

for testing rationality, an immediate implication of this work is that researchers must 

make careful distinctions between the timing of the occurrence of shocks and the timing 

of the impacts of those shocks on the target. Suggestions for future research include using 

these new shock measures to explore the relationships between volatility and business 

cycle turning points, between shocks and volatility, among shocks, volatility, and forecast 

variance, and the propagation of volatility over time. 

                                                                                                                                                 
 ih i h14 A formal comparison would require imposing the restriction  and re-running the GMM tests. φ φ= ∀
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Figure 1. Construction of the Implied Inflation Forecasts 
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Figure 2. Schematic of Forecasts and Cumulative Shocks 
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Figure 3. Occurrence versus Impact of Shocks 
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Figure 4. Cumulative, Cross-Sectional, and Discrete Shocks 
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Shock Measure Shocks Occur From Shocks Impact Inflation From 

Cumulative shocks 
λth 

Beginning of quarter t – h to the end 
of quarter t.  

Beginning of quarter t – h to the end of 
quarter t. 

Cross-sectional shocks 
uth 

Beginning of quarter t – h to the end 
of quarter t – h. 

Beginning of quarter t – h to the end of 
quarter t. 

Discrete shocks 
vth 

Beginning of quarter t – h to the end 
of quarter t – h. 

Beginning of quarter t to the end of 
quarter t. 

Table 1. Cumulative, Cross-Sectional, and Discrete Shocks 
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Figure 5. Derivations of Shocks 
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Figure 6. Cumulative and Discrete Anticipated Changes 
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 Anticipated Change Measure Anticipated Change is 
Conceived From 

Anticipated Change is Expected 
to Impact Inflation From 

Cumulative anticipated changes 
γth 

Beginning of quarter t – h to the 
end of quarter t – h.  

Beginning of quarter t – h to the 
end of quarter t. 

Discrete anticipated changes 
ath 

Beginning of quarter t – h to the 
end of quarter t – h. 

Beginning of quarter t to the end of 
quarter t. 

Table 2. Cumulative and Discrete Anticipated Changes 
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Shocks to IPD Inflation According to Time of Impact (1969-III to 1987-I)
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Figure 7. Discrete Shocks to IPD Inflation According to Time of Impact 

 35



Shocks to IPD Inflation According to Time of Impact (1969-III to 1987-I)
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Figure 8. Summed Discrete Shocks and IPD Inflation 
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Volatility of Shocks According to Time of Impact (1969-III to 2004-IV)
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Figure 9. Volatility of Discrete Shocks and IPD Inflation 
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Volatility of Shocks According to Time of Impact (1971-II to 1987-I)
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Figure 10. Discrete Volatilities According to Time of Impact 

 38



 

Matrix Covariance of errors across: 

Σ All targets, all horizons, and all individuals. 
Ai All targets, all horizons, individual i. 
B All targets, all horizons, and any two individuals. 
bt Target t and all horizons. 
ct Targets t and t – 1, and all horizons. 
dt Targets t and t – 2, and all horizons. 
et Targets t and t – 3, and all horizons. 
ft Targets t and t – 4, and all horizons. 
gt Targets t and t – 5, and all horizons. 

Table 3. Components of the Error Covariance Matrix 

 39



10,4 10,3 10,2 10,1 10,0 10, 1

9,4 8, 1 8,0 8,1 8,2 8,3 8, 1 8,0 8,1 8,2 8, 1 8,0 8,1 8, 1 8,0 8, 1

9,3 8, 1 8,0 8,1 8,2 8,3 8, 1 8,0 8,1 8,2 8, 1 8,0 8,1 8, 1 8,0 8, 1

9,2 8, 1

, , , , , , , , , ,
, , , , , , , , , ,

u u u u u u u u u u u u u u u
u u u u u u u u u u u u u u u
u

λ λ λ λ λ
λ
λ
λ

−

− − − −

− − − −

−

∅
∅

8,0 8,1 8,2 8, 1 8,0 8,1 8,2 8, 1 8,0 8,1 8, 1 8,0 8, 1

9,1 8, 1 8,0 8,1 8, 1 8,0 8,1 8, 1 8,0 8,1 8, 1 8,0 8, 1

9,0 8, 1 8,0 8, 1 8,0 8, 1 8,0 8, 1 8,0 8, 1

9, 1 8, 1 8, 1 8,

, , , , , , , , ,
, , , , , , ,
, , , ,

u u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u
u u u

λ
λ
λ

− − − −

− − − −

− − − −

− − − −

∅
∅
∅

λ

−

−

−

−

1 8, 1 8, 1u u− − ∅

 

Table 4. Cross-Sectional Shocks Common to Cumulative Shocks for Targets 9 and 10 

 40



10,4 10,3 10,2 10,1 10,0 10, 1

8,4 7, 1 7,0 7,1 7,2 7, 1 7,0 7,1 7, 1 7,0 7, 1

8,3 7, 1 7,0 7,1 7,2 7, 1 7,0 7,1 7, 1 7,0 7, 1

8,2 7, 1 7,0 7,1 7,2 7, 1 7,0 7,1 7, 1 7,0 7, 1

, , , , , ,
, , , , , ,
, , , , , ,

u u u u u u u u u u
u u u u u u u u u u
u u u u u u u u u u

λ λ λ λ λ
λ
λ
λ
λ

λ −

− − − −

− − − −

− − − −

∅ ∅
∅ ∅
∅ ∅

8,1 7, 1 7,0 7,1 7, 1 7,0 7,1 7, 1 7,0 7, 1

8,0 7, 1 7,0 7, 1 7,0 7, 1 7,0 7, 1

8, 1 7, 1 7, 1 7, 1 7, 1

, , , , ,
, , ,

u u u u u u u u u
u u u u u u u
u u u u

λ
λ

− − − −

− − − −

− − − − −

∅ ∅
∅ ∅
∅ ∅

 

Table 5. Cross-Sectional Shocks Common to Cumulative Shocks for Targets 8 and 10 
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Figure 11. Correlations of cumulative shocks across horizons and for one-quarter 
separated targets.  
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Figure 12. Correlations of cumulative shocks across horizons and for two-quarter 
separated targets  
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Figure 14. Statistical significance of forecaster biases 
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